13 research outputs found

    Opinion Formation in Laggard Societies

    Full text link
    We introduce a statistical physics model for opinion dynamics on random networks where agents adopt the opinion held by the majority of their direct neighbors only if the fraction of these neighbors exceeds a certain threshold, p_u. We find a transition from total final consensus to a mixed phase where opinions coexist amongst the agents. The relevant parameters are the relative sizes in the initial opinion distribution within the population and the connectivity of the underlying network. As the order parameter we define the asymptotic state of opinions. In the phase diagram we find regions of total consensus and a mixed phase. As the 'laggard parameter' p_u increases the regions of consensus shrink. In addition we introduce rewiring of the underlying network during the opinion formation process and discuss the resulting consequences in the phase diagram.Comment: 5 pages, eps fig

    Outflow Dynamics in Modeling Oligopoly Markets: The Case of the Mobile Telecommunications Market in Poland

    Get PDF
    In this paper we introduce two models of opinion dynamics in oligopoly markets and apply them to a situation, where a new entrant challenges two incumbents of the same size. The models differ in the way the two forces influencing consumer choice -- (local) social interactions and (global) advertising -- interact. We study the general behavior of the models using the Mean Field Approach and Monte Carlo simulations and calibrate the models to data from the Polish telecommunications market. For one of the models criticality is observed -- below a certain critical level of advertising the market approaches a lock-in situation, where one market leader dominates the market and all other brands disappear. Interestingly, for both models the best fits to real data are obtained for conformity level p(0.3,0.4)p \in (0.3,0.4). This agrees very well with the conformity level found by Solomon Asch in his famous social experiment

    Ising model with memory: coarsening and persistence properties

    Full text link
    We consider the coarsening properties of a kinetic Ising model with a memory field. The probability of a spin-flip depends on the persistence time of the spin in a state. The more a spin has been in a given state, the less the spin-flip probability is. We numerically studied the growth and persistence properties of such a system on a two dimensional square lattice. The memory introduces energy barriers which freeze the system at zero temperature. At finite temperature we can observe an apparent arrest of coarsening for low temperature and long memory length. However, since the energy barriers introduced by memory are due to local effects, there exists a timescale on which coarsening takes place as for the Ising model. Moreover the two point correlation functions of the Ising model with and without memory are the same, indicating that they belong to the same universality class.Comment: 10 pages, 7 figures; some figures and some comments adde

    Analytical Solution of the Voter Model on Disordered Networks

    Get PDF
    We present a mathematical description of the voter model dynamics on heterogeneous networks. When the average degree of the graph is μ2\mu \leq 2 the system reaches complete order exponentially fast. For μ>2\mu >2, a finite system falls, before it fully orders, in a quasistationary state in which the average density of active links (links between opposite-state nodes) in surviving runs is constant and equal to (μ2)3(μ1)\frac{(\mu-2)}{3(\mu-1)}, while an infinite large system stays ad infinitum in a partially ordered stationary active state. The mean life time of the quasistationary state is proportional to the mean time to reach the fully ordered state TT, which scales as T(μ1)μ2N(μ2)μ2T \sim \frac{(\mu-1) \mu^2 N}{(\mu-2) \mu_2}, where NN is the number of nodes of the network, and μ2\mu_2 is the second moment of the degree distribution. We find good agreement between these analytical results and numerical simulations on random networks with various degree distributions.Comment: 20 pages, 8 figure

    Some new results on one-dimensional outflow dynamics

    Full text link
    In this paper we introduce modified version of one-dimensional outflow dynamics (known as a Sznajd model) which simplifies the analytical treatment. We show that simulations results of the original and modified rules are exactly the same for various initial conditions. We obtain the analytical formula for exit probability using Kirkwood approximation and we show that it agrees perfectly with computer simulations in case of random initial conditions. Moreover, we compare our results with earlier analytical calculations obtained from renormalization group and from general sequential probabilistic frame introduced by Galam. Using computer simulations we investigate the time evolution of several correlation functions to show if Kirkwood approximation can be justified. Surprisingly, it occurs that Kirkwood approximation gives correct results even for these initial conditions for which it cannot be easily justified.Comment: 6 pages, 7 figure

    Opinion Dynamics of Learning Agents: Does Seeking Consensus Lead to Disagreement?

    Full text link
    We study opinion dynamics in a population of interacting adaptive agents voting on a set of complex multidimensional issues. We consider agents which can classify issues into for or against. The agents arrive at the opinions about each issue in question using an adaptive algorithm. Adaptation comes from learning and the information for the learning process comes from interacting with other neighboring agents and trying to change the internal state in order to concur with their opinions. The change in the internal state is driven by the information contained in the issue and in the opinion of the other agent. We present results in a simple yet rich context where each agent uses a Boolean Perceptron to state its opinion. If there is no internal clock, so the update occurs with asynchronously exchanged information among pairs of agents, then the typical case, if the number of issues is kept small, is the evolution into a society thorn by the emergence of factions with extreme opposite beliefs. This occurs even when seeking consensus with agents with opposite opinions. The curious result is that it is learning from those that hold the same opinions that drives the emergence of factions. This results follows from the fact that factions are prevented by not learning at all from those agents that hold the same opinion. If the number of issues is large, the dynamics becomes trapped and the society does not evolve into factions and a distribution of moderate opinions is observed. We also study the less realistic, but technically simpler synchronous case showing that global consensus is a fixed point. However, the approach to this consensus is glassy in the limit of large societies if agents adapt even in the case of agreement.Comment: 16 pages, 10 figures, revised versio

    Algebraic coarsening in voter models with intermediate states

    Full text link
    The introduction of intermediate states in the dynamics of the voter model modifies the ordering process and restores an effective surface tension. The logarithmic coarsening of the conventional voter model in two dimensions is eliminated in favour of an algebraic decay of the density of interfaces with time, compatible with Model A dynamics at low temperatures. This phenomenon is addressed by deriving Langevin equations for the dynamics of appropriately defined continuous fields. These equations are analyzed using field theoretical arguments and by means of a recently proposed numerical technique for the integration of stochastic equations with multiplicative noise. We find good agreement with lattice simulations of the microscopic model.Comment: 11 pages, 5 figures; minor typos correcte

    Mass Media Influence Spreading in Social Networks with Community Structure

    Full text link
    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across the society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance in order to design successful, cost-effective advertising campaigns.Comment: 21 pages, 9 figures. To appear in JSTA

    Generic modes of consensus formation in stochastic language dynamics

    Full text link
    We introduce a class of stochastic models for the dynamics of two linguistic variants that are competing to become the single, shared convention within an unstructured community of speakers. Different instances of the model are distinguished by the way agents handle variability in the language (i.e., multiple forms for the same meaning). The class of models includes as special cases two previously-studied models of language dynamics, the Naming Game, in which agents tend to standardise on variants they have encountered most frequently, and the Utterance Selection Model, in which agents tend to preserve variability by uniform sampling of a pool of utterances. We reduce the full complexities of the dynamics to a single-coordinate stochastic model which allows the probability and time taken for speakers to reach consensus on a single variant to be calculated for large communities. This analysis suggests that in the broad class of models considered, consensus is formed in one of three generic ways, according to whether agents tend to eliminate, accentuate or sample neutrally the variability in the language. These different regimes are observed in simulations of the full dynamics, and for which the simplified model in some cases makes good quantitative predictions. We use these results, along with comparisons with related models, to conjecture the likely behaviour of more general models, and further make use of empirical data to argue that in reality, biases away from neutral sampling behaviour are likely to be small.Comment: 36 pages; 22 eps figures; embarrassing sign error in v2 corrected; to appear J Stat Mec
    corecore